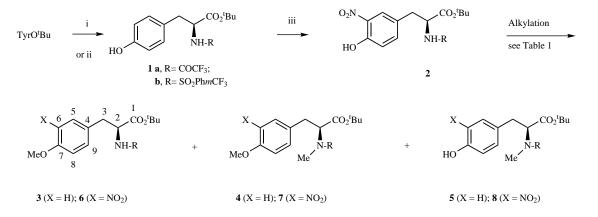


Tetrahedron Letters 43 (2002) 1187-1188

TETRAHEDRON LETTERS

Chemoselective *O*-methylation of *N*-acylated/sulfonylated tyrosine derivatives

Mireille Attolini, Thierry Boxus, Stéphane Biltresse and Jacqueline Marchand-Brynaert*


Unité de Chimie Organique et Médicinale, Université Catholique de Louvain, Bâtiment Lavoisier, Place L. Pasteur no. 1, B-1348 Louvain-la-Neuve, Belgium

Received 27 September 2001; accepted 6 December 2001

Abstract—Methyl ethers (**6a** and **6b**) of *N*-trifluoroacetyl- and *N*-(*m*-trifluoromethyl) phenylsulfonyl-6-nitro-tyrosine *t*-butyl ester were readily prepared by modified Mitsunobu reaction (DPPE, DIAD, MeOH). Williamson (MeI, K_2CO_3 or Li_2CO_3 or NaOH under phase transfer) and classical Mitsunobu conditions (PPh₃, DEAD, MeOH) gave *O*,*N*-dimethylated derivatives (**7a** and **7b**) as side or main products. *O*- versus *N*-selectivity in tyrosine methylation reactions depends on both pK_a values and steric factors. © 2002 Elsevier Science Ltd. All rights reserved.

O-Alkylation of tyrosine derivatives is usually performed by the Williamson reaction.¹ However, depending on the acidity of the *N*-protected function, *N*-alkylation can occur in competition with the formation of phenolic ether.² The Mitsunobu reaction has been scarcely applied in this case.³

During the search of RGD peptidomimetic compounds,⁴ we were interested in the preparation of methyl ethers of *N*-trifluoroacetyl- and *N*-(*m*-trifluoromethyl)phenylsulfonyl-6-nitro-tyrosine *t*-butyl ester **6a** and **6b** (Scheme 1), respectively. The required precursors 2a and 2b were obtained in two steps from tyrosine *t*-butyl ester (TyrO'Bu).⁴ Williamson etherification of 2a with methyl iodide in the presence of potassium carbonate led to a mixture of *O*-methyl and *O*,*N*-dimethyl derivatives **6a** and **7a** (Table 1, entry 1). Similar reaction of methyl iodide and lithium carbonate applied to precursor **2b** gave exclusively *O*,*N*-dimethyl derivative **7b** (entry 2). Under phase transfer conditions, the same result was obtained (entry 3). Therefore, we turned to the Mitsunobu reaction and systematically examined the *O*/*N* chemoselectivity of precursors **1–2**. The reactions were performed

Scheme 1. O/N-Methylation of tyrosine derivatives. *Reagents and conditions*: (i) trifluoroacetic anhydride (1 equiv.), CH₂Cl₂, 20°C, 2 h, 95% yield; (ii) mCF_3PhSO_2Cl (1.1 equiv.), pyridine (1.2 equiv.), CH₂Cl₂, 20°C, 5 h, 48% yield; (iii) HNO₃ (1.2 equiv.), HOAc, 16°C, 1 h, 95% yield.

^{*} Corresponding author. Tel.: +32 10 472740; fax: +32 10 474168; e-mail: marchand@chim.ucl.ac.be

^{0040-4039/02/\$ -} see front matter @ 2002 Elsevier Science Ltd. All rights reserved. PII: S0040-4039(01)02349-8

Entry	Conditions (conversion ratio of 100%)	Products (ratio) ^a	¹ H NMR (δ)	
			OMe	NMe
1	2a ; MeI, K ₂ CO ₃ , CH ₃ CN, reflux	6a/7a (75/25)	3.93 (6a); 3.84 (7a)	2.98
2	2b ; MeI, Li ₂ CO ₃ , DMF, 40°C	7b (100)	3.95	2.90
3	2b; MeI, NaOH, BTBACl, CH ₂ Cl ₂ , H ₂ O, 20°C	7b (100)	3.95	2.90
4	1a; PPh ₃ , DEAD, MeOH, 20°C	3a/4a (84/16)	3.80 (3a); 3.79 (4a)	2.94
5	2a; PPh ₃ , DEAD, MeOH, 20°C	6a/7a (86/14)	3.80 (3a); 3.79 (4a)	2.94
6	2a; DPPE, DEAD, MeOH, 20°C	6a/7a (96/4)	3.80 (3a); 3.79 (4a)	2.94
7	2a; DPPE, DIAD, MeOH, 20°C	6a (100)	3.80 (3a); 3.79 (4a)	2.94
8	1b; PPh ₃ , DEAD, MeOH, 20°C	4b/5b (65/35)	3.79 (4b)	2.90
9	2b ; PPh ₃ , DEAD, MeOH, 20°C	7b (100)	3.79 (4b)	2.90
10	2b; DPPE, DEAD, MeOH, 20°C	6b/7b/8b (66/27/7)	3.95 (6b)	2.90
11	2b; DPPE, DIAD, MeOH, 20°C	6b/7b/8b (51/30/18)	3.95 (6b)	2.92

^a Determined by ¹H NMR analysis of the crude mixtures.

in methanol (0.4 M) at 20°C with diethyl azodicarboxylate (DEAD, 1.1 equiv.) and triphenylphosphine (1.1 equiv.).

In the trifluoroacetamide series (1a, 2a), O-methylation was always preferred over O,N-dimethylation (entries 4 and 5); at the end of the reaction, 84:16 and 86:14 mixtures of 3a:4a and 6a:7a were recovered. However, a 98:2 selectivity of 3a:4a and 6a:7a could be observed for conversion ratios of 60 and 80%, respectively. On the other hand, in the m-(trifluoromethyl)phenyl sulfonamide series (1b, 2b), O-monomethylation was never observed (entries 8 and 9). Due to the high acidity of NH proton, N-methylation occurred faster, leading to a 35:65 mixture of N-methyl (5b) and O,N-dimethyl (4b) derivatives of **1b** at 100% of conversion ratio. When the acidity of the phenol moiety increased, due to the ortho-nitro substitution, O,N-dimethyl (7b) derivative of 2b was the only formed product at the end of the reaction. Indeed, sulfonamides are known to be good substrates of Mitsunobu reaction.^{5,6}

Since the differences of pK_a values of the competing functions were not sufficiently marked for complete selectivity,⁷ we speculated that steric effects could help. By using 1,2-bis(diphenylphosphino)ethane⁸ (DPPE) in replacement of triphenylphosphine, reaction of **2a** (trifluoroacetamide series) furnished a 96:4 mixture of **6a:7a** (entry 6). The next replacement of DEAD by diisopropyl azodicarboxylate⁹ (DIAD) gave **6a** as single product (entry 7). Application of these modified Mitsunobu conditions to methylation of compound **2b** (sulfonamide series) gave *O*-methyl product **6b** as the major compound (entries 10 and 11), but *N*-methyland *O*,*N*-dimethyl derivatives **8b** and **7b** were still present. Nevertheless, the desired methyl ether **6b** could be obtained in about 60% yield, although it was not formed under Williamson or classical Mitsunobu conditions. Thus, steric factors¹⁰ dramatically changed the O/N selectivities of the methylation reaction.

References

- Mendelson, W. L.; Tickner, A. M.; Lantos, I. J. Org. Chem. 1983, 48, 4125.
- Chung, J. Y. L.; Zhao, D.; Hughes, D. L.; Grabowski, E. J. J. *Tetrahedron* 1993, 49, 5767.
- 3. Morley, A. D. Tetrahedron Lett. 2000, 41, 7405.
- Boxus, T.; Touillaux, R.; Dive, G.; Marchand-Brynaert, J. Bioorg. Med. Chem. 1998, 6, 1577.
- 5. Fukuyama, T.; Jow, C.-K.; Cheung, M. *Tetrahedron Lett.* 1995, *36*, 6373.
- Edwards, M. L.; Stemerick, D. M.; McCarthy, J. R. *Tetrahedron* 1994, 50, 5579.
- The pK_a values (H₂O, 20°C) of related compounds are 9.9 (PhOH), 7.2 (*o*-NO₂PhOH), 13 (CF₃CONH₂) and 10 (PhSO₂NH₂).
- O'Neil, I. A.; Thompson, S.; Murray, C. L.; Kalindjian, S. B. Tetrahedron Lett. 1998, 39, 7787.
- Lin, X.; Dorr, H.; Nuss, J. M. Tetrahedron Lett. 2000, 41, 3309.
- Brosse, N.; Pinto, M.-F.; Jamart-Gregoire, B. J. Org. Chem. 2000, 65, 4370.